Skip to content
导航栏

LeetCode 51. N 皇后

题目描述

n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

上图为 8 皇后问题的一种解法。

给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。

每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

示例:

javascript
输入:4
输出:[
 [".Q..",  // 解法 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // 解法 2
  "Q...",
  "...Q",
  ".Q.."]
]
解释: 4 皇后问题存在两个不同的解法。

提示:

javascript
皇后彼此不能相互攻击,也就是说:任何两个皇后都不能处于同一条横行、纵行或斜线上。

来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/n-queens 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解题思路

对于 n 皇后问题,经典的回溯算法,我们采用一行放一个,然后逐行来放,这样我们就不用在剪枝的时候判断是否同行了。只需要判断是否同列 或者 同一斜线就好了。

参考 xiao_ben_zhu 大佬图解

javascript
var solveNQueens = function (n) {
  let res = [];
  let grid = new Array(n); // 初始化一个地图
  for (let i = 0; i < n; i++) {
    grid[i] = new Array(n).fill(".");
  }
  // 剪枝条件
  let check = (x, y) => {
    for (let i = 0; i < x; i++) {
      for (let j = 0; j < n; j++) {
        // 判断同列 或者 同一斜线即可(不需要判断同行是因为一行一行放的,一定不同行)
        if (grid[i][j] == "Q" && (j == y || i + j == x + y || i - j == x - y)) {
          return true;
        }
      }
    }
    return false;
  };
  let dfs = (t) => {
    if (t === n) {
      let ans = grid.slice(); // 拷贝一份,对输出做处理
      for (let i = 0; i < n; i++) {
        ans[i] = ans[i].join("");
      }
      res.push(ans);
      return;
    }
    for (let i = 0; i < n; i++) {
      if (check(t, i)) continue;
      grid[t][i] = "Q";
      dfs(t + 1);
      grid[t][i] = ".";
    }
  };
  dfs(0);
  return res;
};
cpp
class Solution {
public:
    vector<vector<string>> solveNQueens(int n) {
        vector<vector<string>> res;
        vector<string> board(n, string(n, '.'));
        backtrack(res, board, 0);
        return res;
    }

    void backtrack(vector<vector<string>>& res, vector<string>& board, int row) {
        if (row == board.size()) {
            res.push_back(board);
            return;
        }
        int n = board[row].size();
        for (int col = 0; col < n; col++) {
            if (!isValid(board, row, col)) continue;
            board[row][col] = 'Q';
            backtrack(res, board, row + 1);
            board[row][col] = '.';
        }
    }

    bool isValid(vector<string>& board, int row, int col) {
        int n = board.size();
        // 检查列是否有皇后互相冲突
        for (int i = 0; i < n; i++) {
            if (board[i][col] == 'Q') return false;
        }
        // 检查右上方是否有皇后互相冲突
        for (int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
            if (board[i][j] == 'Q') return false;
        }
        // 检查左上方是否有皇后互相冲突
        for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; i--, j--) {
            if (board[i][j] == 'Q') return false;
        }
        return true;
    }
};
java
class Solution {
    public List<List<String>> solveNQueens(int n) {
        List<List<String>> res = new ArrayList<>();
        char[][] board = new char[n][n];
        for (int i = 0; i < n; i++) {
            Arrays.fill(board[i], '.');
        }
        backtrack(res, board, 0);
        return res;
    }

    private void backtrack(List<List<String>> res, char[][] board, int row) {
        if (row == board.length) {
            res.add(charToString(board));
            return;
        }
        int n = board[row].length;
        for (int col = 0; col < n; col++) {
            if (!isValid(board, row, col)) continue;
            board[row][col] = 'Q';
            backtrack(res, board, row + 1);
            board[row][col] = '.';
        }
    }

    private boolean isValid(char[][] board, int row, int col) {
        int n = board.length;
        // 检查列是否有皇后互相冲突
        for (int i = 0; i < n; i++) {
            if (board[i][col] == 'Q') return false;
        }
        // 检查右上方是否有皇后互相冲突
        for (int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
            if (board[i][j] == 'Q') return false;
        }
        // 检查左上方是否有皇后互相冲突
        for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; i--, j--) {
            if (board[i][j] == 'Q') return false;
        }
        return true;
    }

    private List<String> charToString(char[][] board) {
        List<String> res = new ArrayList<>();
        for (char[] chars : board) {
            res.add(new String(chars));
        }
        return res;
    }
}
python
class Solution:
    def solveNQueens(self, n: int) -> List[List[str]]:
        res = []
        board = [['.'] * n for _ in range(n)]
        def backtrack(board, row):
            if row == len(board):
                res.append([''.join(row) for row in board])
                return
            n = len(board[row])
            for col in range(n):
                if not isValid(board, row, col):
                    continue
                board[row][col] = 'Q'
                backtrack(board, row + 1)
                board[row][col] = '.'
        def isValid(board, row, col):
            n = len(board)
            # 检查列是否有皇后互相冲突
            for i in range(n):
                if board[i][col] == 'Q':
                    return False
            # 检查右上方是否有皇后互相冲突
            i, j = row - 1, col + 1
            while i >= 0 and j < n:
                if board[i][j] == 'Q':
                    return False
                i, j = i - 1, j + 1
            # 检查左上方是否有皇后互相冲突
            i, j = row - 1, col - 1
            while i >= 0 and j >= 0:
                if board[i][j] == 'Q':
                    return False
                i, j = i - 1, j - 1
            return True
        backtrack(board, 0)
        return res
javascript
学如逆水行舟,不进则退